
CTO	@	Kiratech
Marco	Bizzantino

marco.bizzantino@kiratech.it

@bizzam
#containerday

Overlay	Network
Multi	Docker	Host	Networking



Understand	Docker	container	networks

• Networks,	by	definition,	provide	
complete	isolation	for	containers
• It’s	important	to	have	control	over	the	
networks
• Docker	container	networks	give	you	that	
control



Docker	networking	model

• Containers	do	not	have	a	public	IPv4	address
• They	are	allocated	a	private	address
• Services	running	on	a	container	must	be	

exposed	port	by	port
• Container	ports	have	to	be	mapped	to	the	

host	port	to	avoid	conflicts



Default	Network

• Docker	installation	creates	three	networks	
automatically

• You	can	use	--net	flag	to	specify	which	network	
you	want	to	run	a	container	on



Bridge	Network

• Is	the	docker0	network	present	in	all	Docker	installations
• All	containers	by	default	connects	to	it
• Part	of	host’s	network	stack
• docker0 is	assigned	a	random	IP	address	and	subnet	from	the	

private	range	defined	by	RFC	1918



None	Network

• Container-specific	
network	stack

• Container	attached	
lacks	a	network	
interface



Host	Network

• Adds	a	container	on	the	host	network	stack
• Network	configuration	inside	the	container	is	

identical	to	the	host



Check	container	networking	properties

The	docker network	inspect	command	returns	information	
about	a	network



Network	summary

• Docker	containers	run	in	a	subnet	provisioned	by	the	
docker0	bridge	on	the	host	machine

• We	can	create	our	own	bridge	or	different	network	to	
run	containers	on

• Auto	mapping	of	container	ports	to	host	ports	only	
applies	to	the	port	numbers	defined	in	the	Dockerfile
EXPOSE	instruction



Multi-host	networking

• Containers	running	on	different	hosts	cannot	
communicate	with	each	other	without	mapping	
their	TCP	ports	to	the	host’s	TCP	ports

• Multi-host	networking	allows	these	containers	to	
communicate	without	requiring	port	mapping

• The	Docker	Engine	supports	multi	host	networking	
natively	out	of	the	box	via	the	overlay network	
driver



Multi-host	networking

Requirements	for	creating	an	overlay	network
• Access	to	a	key-value	store
• A	cluster	of	hosts	connected	to	the	key-value	store
• All	hosts	must	have	Kernel	version	3.16	or	higher	
• Docker	Engine	properly	configured	on	each	host



Overlay	network

• overlay	network	driver	supports	multi-host	networking	
natively	out-of-the-box

• Based	on	libnetwork,	a	built-in	VXLAN-based	overlay	
network	driver,	and	Docker’s	libkv library

• The	overlay	network	requires	a	valid	key-value	store	
service

• The	Docker	hosts	must	be	able	to	communicate
• udp	port	4789 Data	plane	(VXLAN)
• tcp/udp	port	7946 Control	plane



Key-value	store

Stores	information	about	the	network	state	including
• Discovery
• Endpoints
• IP	addresses

Supported	options
• Consul
• Zookeeper	(Distributed	store)
• Etcd
• BoltDB (Local	store)



Setup	key-value	store
On	your	Master	Node

Run	consul	in	a	container	with	the	following	command
docker run -d -p 8500:8500 -h consul --name 
consul \

progrium/consul -server –bootstrap

Check	that	consul	is	running	and	that	port	8500	is	mapped	to	the	host	
using	docker ps



Configure	Docker	Engines

The	Docker	Engine	on	each	node	needs	to	be	configured	to:
• Listen	on	TCP	port	2375
• Use	the	Consul	key-value	store	on	our	master	node

Modify	the	DOCKER_OPTS	variable	

DOCKER_OPTS="-H	tcp://0.0.0.0:2375	\
-H	unix:///var/run/docker.sock \
--cluster-store=consul://<Master	Node	IP>:8500/network	\
--cluster-advertise=eth0:2375"



Configure	the	Overlay	network

Create	an	overlay	network	on	one	of	the	machines	in	the	Swarm

docker network	create	-d	overlay	–subnet	10.10.2.0/24	multinet



Running	containers	on	a	multi-host	network

To	run	a	container	on	the	multi-host	network,	you	just	
need	to	specify	the	network	name	on	the	docker run
command.	For	example:
docker run -itd --name c1 --net 
multinet busybox
Can	run	containers	from	any	host	connected	to	the	
network	
Container	will	be	assigned	an	IP	address	from	the	subnet	
of	your	multi-host	network



Running	containers	on	a	multi-host	network

The	first	time	an	overlay	network	is	created	on	any	host,	
Docker	also	creates	another	network	called	
docker_gwbridge

The	docker_gwbridgenetwork	provides	external	access	
for	containers

All	TCP/UDP	ports	are	open	on	an	overlay	network	and	
thus,	it	is	not	necessary	to	map	container	ports	to	host	
ports	in	order	for	containers	to	communicate



Overlay	Network	

Once	connected,	each	container	has	access	to	all	the	
containers	in	the	network	regardless	of	which	Docker	host	
the	container	was	launched	on.



Container	discovery

• The	docker daemon	contains	an	embedded	DNS	server
• Containers	must	run	with	a	name	(using	the	--name 
option).	This	maps	to	the	IP	address	on	the	network	the	
container	is	connected	to.

• When	a	container	is	added	to	a	multi-host	network,	all	
other	hosts	will	be	able	to	discover	it	via	the	DNS	server



Container	discovery

• Container	may	have	any	number	of	aliases	on	a	
network

• Containers	may	have	different	aliases	on	different	
networks,	set	using	the	--alias option	on	
network connect

• If	the	embedded	DNS	server	is	unable	to	resolve	the	
request	it	will	be	forwarded	to	any	external	DNS	servers	
configured	for	the	container



Multi-host	Network	Summary

• An	overlay	(multi-host)	network	requires	a	
key/value	store

• Containers	added	to	a	multi-host	network	are	
discoverable	by	other	containers,	as	long	as	
the	container	name/alias	has	been	specified

• Containers	on	different	hosts	can	
communicate	with	each	other	without	
exposing	any	ports	if	the	hosts	are	part	of	the	
same	overlay	network



Macvlan and	Ipvlan Network	Drivers

• complete	control	of	layer	2	VLAN	tagging	and	even	
Ipvlan L3	routing	for	users	interested	in	underlay	
network	integration

• container	attached	directly	to	the	Docker	host	interface
• easy	access	for	external	facing	services	as	there	is	no	
port	mappings

• still	experimental

More	informations:
https://github.com/docker/docker/blob/master/experime
ntal/vlan-networks.md



Thank	you


